Colorimetric gas sensors for the detection of ammonia, nitrogen dioxide and carbon monoxide

<u>Jürgen Wöllenstein</u>, Martin Schiel, Carolin Peter, Katrin Schmitt Fraunhofer IPM, University of Freiburg

University of Freiburg Department of Microsystem technology

Laboratory for

Gas Sensors

Prof. Dr. Jürgen Wöllenstein

- sensor based RFID labels
- micro machined gas sensor arrays
- gas sensitive materials
- micro optical gas sensors
- sensor systems
- gas measurement lab

Fraunhofer IPM / IMTEK

Fraunhofer-Institut für Physikalische Messtechnik IPM

Heidenhofstrasse 8

79110 Freiburg

Thermoelektrische und integrierte Sensorsysteme TES

Gruppe: Integrierte Sensorsysteme ISS

gas sensor systems

Motivation and Applications

- Selective gas sensors
- No need for clean room processing
- Small and simple set-up
- Ultra low power consumption
- Possibility for wireless readout (RFID)
- Fire detection
- Process monitoring
- Environmental monitoring
- State-of-the-art: Dräger Tubes

State of the art

Optical fiber, tungsten lamp and spectrometer

- Bromocresol purple (BCP) in silica
 - > S. Tao et al., Sens & Act, B115 (2006) 158-163.
 - $\succ \rightarrow Bulky$
 - Expensive

Reflected light form LEDs

- Methyl red on a silica plate
 - > T. Nakamoto et al., Sens & Act, B116 (2006) 202-206.
 - > Integration on flexible substrates difficult
 - Lower sensitivity

Two LEDs

- p-nitrophenylnitrosamine (NPNA) in PVC
 - R.L. Shepherd et al., IEEE Sensors Journal, 6 (2006) 861-866.
 - \succ \rightarrow lower sensitivity

Dye-coated plated

Sensor Principle

Measurement System

J. Courbat et al. / Sensors and Actuators B 160 (2011) 910- 915

Ammonia color dye

Example: Bromocresol purple, pH-indicator within a porous polymeric matrix

Color change due to a (reversible) reaction with ammonia

Ammonia sensor

Spectroscopic Gas Measurements

- Measurement over all the spectrum indicates where the maximum light absorption occurs.
- Film thickness: 2-5 µm.
- Data acquisition: Elmer-Perkin λ900 spectrometer.
- Light in the visible range: 200 700 nm, steps of 3 nm.
- Gas cell connected to gas mixing system.
- Available NH₃ concentration: 5-1000 ppm.

Ammonia sensor

Colorimetric Film Efficiency

Beer-Lambert law:
$$I_{out} = I_{in} \cdot 10^{-\alpha lc}$$

I_{in}: Incoming light intensity

 I_{out} : Light intensity after passing through the film α : absorption coefficient

I: path length

c: concentration of the absorbing material

Abs coef. w (α) [μm ⁻¹]	BPB	BCG
Poly(vinyl butyral)	2.55	0.50
Ethyl cellulose	1.41	0.24
PMMA	0.72	0.10

Best results obtained with BPB

Ammonia sensor

Selectivity

- Film: BPB in Poly(vinyl butyral) and tributyl phosphate
- Gas carrier: synthetic air, 50%RH

Film-Coated Waveguide

- Films on microscope slide cut with an angle of 45°
- Electronic circuit with feedback loop for keeping the light intensity constant

Ammonia measurements with coated waveguide and LED

Gas carrier: synthetic air, 0.7 50% RH, 1000 sccm/min 0.6 BPB in PMMA was selected 0.5 due to a good tradeoff

between sensitivity and response/recovery time

J. Courbat, D. Briand, J. Damon-Lacoste, J. Wöllenstein, N.F. de Rooij "Evaluation of pH Indicator-Based Colorimetric Films for Ammonia Detection Using Optical Waveguides", Sensors and Actuators B Chemical, 2009

Market: Smoke detectors

Optical smoke detectors

Common fire detectors are based on the scattered light principle

Partikel detection

False alarms (moisture, dust, particulate matter,....)

Fire detectors, test fires

	CO2	H2O	СО	H2	NO2	NO	HC
No fire	< 500 ppm	25%	1-3 ppm	0,1 – 1 ppm	10 ppb	10 ppb	1 ppm
TF 1	4000 ppm 750 ppm/min	40 % 1,5%/ min	30 ppm 6 ppm/min	20 ppm 3 ppm/min	1 ppm 200 ppb/min		
TF 2	700 ppm 25 ppm/min	28% 0,4%/min	30 ppm 6 ppm/min	120 ppb 100 ppb/min	70 ppb 10 ppb/min	20 ppm 5 ppm/min	
TF 3	800 ppm 40 ppm/min	28% 0,4%/min	100 ppm 15 ppm/min	25 ppm 20 ppm/min	40 ppb 10 ppb/min	100 ppb 20 ppb/min	30 – 40 ppm 6 ppm/min
TF 4	1800 ppm 520 ppm/min	30% 2,5%/min	12 ppm 4 ppm/min	3 ppm 1 ppm/min	3 ppm 1 ppm/min	10 ppm 5 ppm/min	< 5 ppm
TF 5	2000 ppm 750 ppm/min	30% 1,5 %/min	15 ppm 5 ppm/min	5 ppm 1 ppm/min	1 ppm 0,5 ppm/min	2 – 3 ppm 0,7 ppm/min	< 5 ppm
TF 6	7000 ppm 1000 ppm/min		5 ppm		2 ppm	2 ppm	

Standard test fires and according gas types and concentrations.

TF = open wood fire, TF2=smoldering wood, TF3= smoldering wick (cotton), TF4= Polyurethane (foam), TF 5 = n-heptane, TF6= ethanol fire.

Quelle: Siemens

Gas sensor based fire detectors

Objective of developments:

- CO / NO₂ sensor
- Production cost: 1 Euro
- Ultra low power consumption
- Less than 1 W
- Lifetime: five years
- No cross sensitivities
- Small package

- Market 10 billion Euro
- Big player: Honeywell, Siemens
- => one possible solution: Colour dyes

Metalloporphyrins for NO₂ detection

- Most common natural pigments
- Famous example: hemoglobin (1 kg in human circulatory system)
- Chemical structure: 4 pyrrole rings, connected by methines
- Component of many proteins
- Use in sensors based on fluorescence-quenching
- Examples:

Zinc-porphyrin:

5,10,15,20-tetraphenylporphyrin-zinc (ZnTPP)

Iron-porphyrin:

5,10,15,20-tetraphenyl-21H,23H-porphyrin iron(III) chloride (FeTPP)

ZnTPP: Chemical Reaction Principle

Two-step mechanism causes changes in infrared and visible range

Zinc-porphyrin (ZnTPP)

Preparation of sensor film:

Function	Material
Dye	ZnTPP
Polymer	PVC
Plasticizer	Hexamoll™DINCH
Solvent	Tetrahydrofuran

ZnTPP: Reaction to 5 ppm NO₂ Analysis in UV/VIS-Spectrometer

ZnTPP: Waveguide-based Measurements

- Reaction to 5 ppm NO₂
- Color change from pink to yellow
- Reversible but very long relaxation time (several days)

ZnTPP: Cross Sensitivity

- Ammonia (100 ppm)
- Ethanol (50 ppm)
- Carbon dioxide (2000 ppm)
- Carbon monoxide (200 ppm)

Iron-porphyrin (FeTPP)

Preparation of sensor film:

Function	Material
Dye	FeTPPCI
Polymer	PVC
Plasticizer	Hexamoll™DINCH
Solvent	Tetrahydrofuran

Fe-TPP: Reaction to NO₂

Change of transmission

No observable cross-sensitivity to ethanol, carbon monoxide, carbon dioxide, ammonia

Colour dyes for CO-detection First try: molybdenum blue / palladium

Bielefelder Rad

Tianbo Liu, Ekkehard Diemann, Achim Müller: Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters". In: Journal of Chemical Education, Volume 84 Nr. 3, March 2007.

New trend Rhodium complexes for CO-detection

Esteban et.al.:

"Sensitive and Selective Chromogenic Sensing of Carbon Monoxide by Using Binuclear Rhodium Complexes" In: Angew. Chem. 2010, 122, 5054–5057

- reversible
- High sensitive to CO
- Very low cross sensitivities (H₂O, O₂, N₂, NO₂, SO₂)

Synthesis

Cotton et.al.:

"Structural and Electrochemical Characterization of the Novel Ortho-Metalated Dirhodium(II) Compounds $Rh_2(O_2CCH_3)_2[(C_6H_5)_2P(C_6H_4)]_2 \cdot 2L$ In: Organometallics 1985, 4, 8-13

reactants

- Triphenylphosphine
- Rhodiumacetate
- glacial acetic acid
- reflux condenser
- Inert gas
- Evaporation of solvent

Synthesis

cis- $[Rh_2(C_6H_4PPh_2)_2(O_2CCH_3)_2](HO_2CCH_3)_2$

Color change

Color change due to CO exposure

Wellenlänge / nm

© Fraunhofer IPM / Slide 33

Waveguide based CO-measurement

Modification EPFL: Kay Severin

In order to increase the sensitivity and stability, we have synthesized the new complex 2 by substitution of the acetate ligands with trifluoroacetate

Fig. 1. Synthesis of the Rh complex 2 and its reaction with CO. Complex 2 features weakly bound trifluoroacetate ligands. The latter are replaced by CO.

C. Courbat et al, Procedia Engineering 25 (2011) 1329 – 1332

Spectrophotometric measurement of complex 2 in solution when exposed to air and to CO (1 atm).

C. Courbat et al, Procedia Engineering 25 (2011) 1329 – 1332

CO exposure and test fires

Gas response of the colorimetric film when exposed to CO. The gas carrier was synthetic air with a flow of 500 sccm and humidity background of 30%. (b) Colorimetric sensor exposed to different test fires: Smoldering cotton, n-heptane, and smoldering wood. The sensor showed a completely reversibility and a suitable response time for the application. As reference, the CO concentration was monitored with a *Binos® 100* from *Rosemount Analytical*.

Test fire at SBT facilities

- Fire lab
- 6 different standard test fire
- Sensor system on top of the room
- Reference sensors (CO, CO₂, NO, NO₂, temperature)

SIEMENS

Results: 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride

- In PVC- \rightarrow NO₂ Sensor
- Test fire 6 ethanol fire
- Gas concentrations after 10 min: CO: 4,68 ppm; CO₂: 8110 ppm; NO: 1785 ppb; NO₂: 695 ppb
 T90 after fresh air inlet: 24 min

Results Rh-complex (Esteban et al)

- Rh/EC-Chip \rightarrow CO Sensor
- Test fire 2 smouldering wood
- Gas concentration after 10 min: CO: 86 ppm
- T90 after fresh air inlet: 4,7 min

Application Integration on RFID-platform

- Development of an RFID platform
- Credit card size
- Working at 13.56 MHz standard
- ISO 15693
- Direct integration of the read-out electronics

RFID-Tag with optical ammonia / CO sensor

RFID-Tag Very first measurements

- Ammonia measurement
- 500 ppb, 1 ppm and 5 ppm NH₃ in air.
 - \rightarrow Detection limit in the lower ppb range!

Application: RFID – CO sensor system ---- Field tests

- Spitzenclusterprojekt Microtec Südwest
 Sens-RFID , Goal: Energy self-sufficient
 CO-sensor for iron making
- Thermoelectric power converter,
 - Colourimetric CO-Sensor,
 - Wireless comunication
- Field tests: Thyssen Krupp Steel Duisburg
- Measurement at torpedo ladle with liquid pig iron (600 Tons)

Field tests ---- Impressions

Field tests ---- Measuring results

- 24 h measurement at Torpedo ladle
- Thermoelectric generator supplies enough energy
- Filling in blast furnace

Conclusions

- Color dyes for NO₂, CO and NH₃ detection
- Integration as waveguide-based system
- Detection in the low ppm-range
- Extremely low cross-sensitivities

Further Research

- Analysis of different polymers as a matrix
- Synthesis of chromogenic substances
- Long term stability
- Response time
- Improvement of deposition process
 - Dip coating
 - Spin coating
 - Inkjet printing
- Polymer waveguide
- Miniaturisation of sensor system

Thanks to the

gas sensors group at IPM and EPFL

- Janosch Kneer
- Jonas Rist
- Martin Dold
- Andreas Kürzinger
- Marie-Luise Bauersfeld
- Ina Schumacher
- Andreas Müller
- Timo Laske
- Jochen Huber
- Sven Rademacher
- Jerome Courbat, Dannick Briand, Kay Severin, EPFL

Thank you for your attention!

