Colorimetric gas sensors for the detection of ammonia, nitrogen dioxide and carbon monoxide

Jürgen Wöllenstein, Martin Schiel, Carolin Peter, Katrin Schmitt
Fraunhofer IPM, University of Freiburg
University of Freiburg
Department of Microsystem technology

Laboratory for Gas Sensors
Prof. Dr. Jürgen Wöllenstein

• sensor based RFID labels
• micro machined gas sensor arrays
• gas sensitive materials
• micro optical gas sensors
• sensor systems
• gas measurement lab
Fraunhofer-Institut für Physikalische Messtechnik IPM
Heidenhofstrasse 8
79110 Freiburg
Thermoelektrische und integrierte Sensorsysteme TES
Gruppe: Integrierte Sensorsysteme ISS
gas sensor systems
Motivation and Applications

- Selective gas sensors
- No need for clean room processing
- Small and simple set-up
- Ultra low power consumption
- Possibility for wireless readout (RFID)

- Fire detection
- Process monitoring
- Environmental monitoring

- State-of-the-art: Dräger Tubes
State of the art

Optical fiber, tungsten lamp and spectrometer

- Bromocresol purple (BCP) in silica
 - Bulky
 - Expensive

Reflected light form LEDs

- Methyl red on a silica plate
 - Integration on flexible substrates difficult
 - Lower sensitivity

Two LEDs

- p-nitrophenylnitrosamine (NPNA) in PVC
 - lower sensitivity
Sensor Principle

![Diagram of sensor principle showing a gas-sensitive layer, light source, waveguide, and detector leading to a color change upon exposure to gas.](image-url)
Measurement System

- LED
- Optical sensor chip in measurement chamber
- Photo diode
- Power supply
- Electronics
- Gas in- and outlet
Ammonia color dye

Example: Bromocresol purple, pH-indicator within a porous polymeric matrix
Color change due to a (reversible) reaction with ammonia

\[\text{Bromocresol purple} + \text{NH}_3 \rightleftharpoons \text{Ammoniated Bromocresol purple} \]

\[\text{pH} = 5.2 \quad \text{pH} = 6.8 \]
Spectroscopic Gas Measurements

- Measurement over all the spectrum indicates where the maximum light absorption occurs.
- Film thickness: 2-5 µm.
- Data acquisition: Elmer-Perkin λ900 spectrometer.
- Light in the visible range: 200 – 700 nm, steps of 3 nm.
- Gas cell connected to gas mixing system.
- Available NH₃ concentration: 5-1000 ppm.
Ammonia sensor

Colorimetric Film Efficiency

Beer-Lambert law: \(I_{out} = I_{in} \cdot 10^{-\alpha l c} \)

- \(I_{in} \): Incoming light intensity
- \(I_{out} \): Light intensity after passing through the film
- \(\alpha \): absorption coefficient
- \(l \): path length
- \(c \): concentration of the absorbing material

<table>
<thead>
<tr>
<th>Abs coef. w ((\alpha)) [(\mu\text{m}^{-1})]</th>
<th>BPB</th>
<th>BCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(vinyl butyral)</td>
<td>2.55</td>
<td>0.50</td>
</tr>
<tr>
<td>Ethyl cellulose</td>
<td>1.41</td>
<td>0.24</td>
</tr>
<tr>
<td>PMMA</td>
<td>0.72</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Best results obtained with BPB
Ammonia sensor

Selectivity

- Film: BPB in Poly(vinyl butyral) and tributyl phosphate
- Gas carrier: synthetic air, 50%RH

![Graph showing transmission vs. wavelength for different gases in 50%RH air.]

- 50%RH air
- 30% O₂ in 50%RH air
- 200 ppm Ethylene in 50%RH air
- 10500 ppm H₂ in 50%RH air
- 30 ppm NO₂ in 50%RH air
- 200 ppm CO in 50%RH air
- 100 ppm NH₃ in 50%RH air
Film-Coated Waveguide

- Films on microscope slide cut with an angle of 45°
- Electronic circuit with feedback loop for keeping the light intensity constant

[Diagram of a film-coated waveguide and an electronic circuit with feedback loop]
Ammonia measurements with coated waveguide and LED

Gas carrier: synthetic air, 50% RH, 1000 sccm/min

BPB in PMMA was selected due to a good tradeoff between sensitivity and response/recovery time

Market: Smoke detectors

Optical smoke detectors

Common fire detectors are based on the scattered light principle

Partikel detection

False alarms (moisture, dust, particulate matter,…)
<table>
<thead>
<tr>
<th>No fire</th>
<th>CO2</th>
<th>H2O</th>
<th>CO</th>
<th>H2</th>
<th>NO2</th>
<th>NO</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 500 ppm</td>
<td>25%</td>
<td>1-3 ppm</td>
<td>0.1 – 1 ppm</td>
<td>10 ppb</td>
<td>10 ppb</td>
<td>1 ppm</td>
</tr>
<tr>
<td>TF 1</td>
<td>4000 ppm</td>
<td>40%</td>
<td>30 ppm</td>
<td>20 ppm</td>
<td>1 ppm</td>
<td>200 ppb/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750 ppm/min</td>
<td>1,5%</td>
<td>6 ppm/min</td>
<td>3 ppm/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 ppm</td>
<td>28%</td>
<td>30 ppm</td>
<td>120 ppb</td>
<td>70 ppb</td>
<td>20 ppb</td>
<td>5 ppm/min</td>
</tr>
<tr>
<td></td>
<td>25 ppm/min</td>
<td>0.4%</td>
<td>6 ppm/min</td>
<td>100 ppb/min</td>
<td>10 ppb/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF 3</td>
<td>800 ppm</td>
<td>28%</td>
<td>100 ppm</td>
<td>25 ppm</td>
<td>40 ppb</td>
<td>100 ppb/min</td>
<td>30 – 40 ppm</td>
</tr>
<tr>
<td></td>
<td>40 ppm/min</td>
<td>0.4%</td>
<td>15 ppm/min</td>
<td>20 ppm/min</td>
<td>6 ppm/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF 4</td>
<td>1800 ppm</td>
<td>30%</td>
<td>12 ppm</td>
<td>3 ppm</td>
<td>3 ppm</td>
<td>10 ppm</td>
<td>< 5 ppm</td>
</tr>
<tr>
<td></td>
<td>520 ppm/min</td>
<td>2.5%</td>
<td>4 ppm/min</td>
<td>1 ppm/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000 ppm</td>
<td>30%</td>
<td>15 ppm</td>
<td>5 ppm</td>
<td>1 ppm</td>
<td>2 – 3 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750 ppm/min</td>
<td>1.5%</td>
<td>5 ppm/min</td>
<td>0.5 ppm/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7000 ppm</td>
<td>5 ppm</td>
<td></td>
<td></td>
<td>2 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 ppm/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard test fires and according gas types and concentrations.
TF = open wood fire, TF2 = smoldering wood, TF3 = smoldering wick (cotton), TF4 = Polyurethane (foam), TF 5 = n-heptane, TF6 = ethanol fire.

Quelle: Siemens
Gas sensor based fire detectors

Objective of developments:

- CO / NO$_2$ sensor
- Production cost: 1 Euro
- Ultra low power consumption
- Less than 1 W
- Lifetime: five years
- No cross sensitivities
- Small package

- Market 10 billion Euro
- Big player: Honeywell, Siemens

=> one possible solution: Colour dyes
Metalloporphyrins for NO$_2$ detection

- Most common natural pigments
- Famous example: hemoglobin (1 kg in human circulatory system)
- Chemical structure: 4 pyrrole rings, connected by methines
- Component of many proteins
- Use in sensors based on fluorescence-quenching
- Examples:

 Zinc-porphyrin:

 5,10,15,20-tetraphenylporphyrin-zinc (ZnTPP)

 Iron-porphyrin:

 5,10,15,20-tetraphenyl-21H,23H-porphyrin iron(III) chloride (FeTPP)
ZnTPP: Chemical Reaction Principle

Two-step mechanism causes changes in infrared and visible range

"\[
\text{ZnTPP:} \quad \begin{array}{c}
\text{Zn} \\
\text{Ph} \\
\text{Ph} \\
\text{Ph} \\
\text{Ph}
\end{array}
\xrightarrow{\text{NO}_2}
\begin{array}{c}
\text{Zn} \\
\text{Ph} \\
\text{Ph} \\
\text{Ph} \\
\text{Ph}
\end{array}
\cdot [\text{NO}_2]^- \\
\xrightarrow{\text{NO}_2}
\begin{array}{c}
\text{Zn} \\
\text{Ph} \\
\text{Ph} \\
\text{Ph} \\
\text{Ph}
\end{array}
\cdot [\text{NO}_2]^- \]
"
Zinc-porphyrin (ZnTPP)

Preparation of sensor film:

<table>
<thead>
<tr>
<th>Function</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
<td>ZnTPP</td>
</tr>
<tr>
<td>Polymer</td>
<td>PVC</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>Hexamoll™DINCH</td>
</tr>
<tr>
<td>Solvent</td>
<td>Tetrahydrofuran</td>
</tr>
</tbody>
</table>

© Fraunhofer IPM / Slide 22
ZnTPP: Reaction to 5 ppm NO₂
Analysis in UV/VIS-Spectrometer

Change of transmission:

Absorption @ 450 nm:
ZnTPP: Waveguide-based Measurements

- Reaction to 5 ppm NO₂
- Color change from pink to yellow
- Reversible but very long relaxation time (several days)
ZnTPP: Cross Sensitivity

- Ammonia (100 ppm)
- Ethanol (50 ppm)
- Carbon dioxide (2000 ppm)
- Carbon monoxide (200 ppm)
Iron-porphyrin (FeTPP)

Preparation of sensor film:

<table>
<thead>
<tr>
<th>Function</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
<td>FeTPP-Cl</td>
</tr>
<tr>
<td>Polymer</td>
<td>PVC</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>Hexamoll™ DINCH</td>
</tr>
<tr>
<td>Solvent</td>
<td>Tetrahydrofuran</td>
</tr>
</tbody>
</table>
Fe-TPP: Reaction to NO$_2$

- Change of transmission

- No observable cross-sensitivity to ethanol, carbon monoxide, carbon dioxide, ammonia
Colour dyes for CO-detection
First try: molybdenum blue / palladium

New trend
Rhodium complexes for CO-detection

- reversible
- High sensitive to CO
- Very low cross sensitivities (H₂O, O₂, N₂, NO₂, SO₂)
Synthesis

- Cotton et al.: "Structural and Electrochemical Characterization of the Novel Ortho-Metalated Dirhodium(II) Compounds \(Rh_2(O_2CCH_3)_2[(C_6H_5)_2P(C_6H_4)]_2 \cdot 2L \) In: Organometallics 1985, 4, 8-13

- reactants
 - Triphenylphosphine
 - Rhodiumacetate
 - glacial acetic acid
 - reflux condenser
 - Inert gas
 - Evaporation of solvent
Synthesis

cis-\([\text{Rh}_2(\text{C}_6\text{H}_4\text{PPh}_2)_2(\text{O}_2\text{CCH}_3)_2](\text{HO}_2\text{CCH}_3)_2]\)
Color change

1·(CH₃CO₂H)₂ ⇌ CH₃CO₂H·Rh·Rh·HO₂CCH₃ + CO

1·(CO, CH₃CO₂H) ⇌ CO·Rh·Rh·CO·P·O·O

1·(CO)₂
Color change due to CO exposure

UV/VIS transmission spectra of $1 \cdot (\text{CH}_3\text{CO}_2\text{H})_2$ before and after exposure to 100 ppm CO. The color of the sample changes from violet to yellow.
Waveguide based CO-measurement

$\lambda = 470 \text{ nm}$

Transmission / %

Zeit / min

Konzentration CO / ppm

Transmission

Konzentration CO
In order to increase the sensitivity and stability, we have synthesized the new complex 2 by substitution of the acetate ligands with trifluoroacetate.

Fig. 1. Synthesis of the Rh complex 2 and its reaction with CO. Complex 2 features weakly bound trifluoroacetate ligands. The latter are replaced by CO.

C. Courbat et al, Procedia Engineering 25 (2011) 1329 – 1332
Spectrophotometric measurement of complex 2 in solution when exposed to air and to CO (1 atm).

C. Courbat et al, Procedia Engineering 25 (2011) 1329 – 1332
Gas response of the colorimetric film when exposed to CO. The gas carrier was synthetic air with a flow of 500 sccm and humidity background of 30%. (b) Colorimetric sensor exposed to different test fires: Smoldering cotton, n-heptane, and smoldering wood. The sensor showed a completely reversibility and a suitable response time for the application. As reference, the CO concentration was monitored with a Binos® 100 from Rosemount Analytical.
Test fire at SBT facilities

- Fire lab
- 6 different standard test fire
- Sensor system on top of the room
- Reference sensors (CO, CO₂, NO, NO₂, temperature)
Results: 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride

- In PVC → NO₂ Sensor
- Test fire 6 ethanol fire
- Gas concentrations after 10 min:
 - CO: 4.68 ppm; CO₂: 8110 ppm;
 - NO: 1785 ppb; NO₂: 695 ppb
- T90 after fresh air inlet: 24 min
Results Rh-complex (Esteban et al)

- Rh/EC-Chip → CO - Sensor
- Test fire 2 smouldering wood
- Gas concentration after 10 min: CO: 86 ppm
- T90 after fresh air inlet: 4.7 min

Graph showing CO concentration over time:
- X-axis: Zeit / min
- Y-axis: CO / ppm
- Graph shows two peaks with labels: Heizplatte an, Lüftung an
Application Integration on RFID-platform

- Development of an RFID platform
- Credit card size
- Working at 13.56 MHz standard
- ISO 15693
- Direct integration of the read-out electronics
RFID-Tag with optical ammonia / CO sensor

Melexis 13.56 MHz RFID-Transponder
µController
battery
Photodiodes
Sensorchip
LED
RFID-Tag

Very first measurements

- Ammonia measurement
- 500 ppb, 1 ppm and 5 ppm NH₃ in air.

→ Detection limit in the lower ppb range!
Application:
RFID – CO sensor system ---- Field tests

- Spitzenclusterprojekt Microtec Südwest Sens-RFID, Goal: Energy self-sufficient CO-sensor for iron making
- Thermoelectric power converter, Colourimetric CO-Sensor, Wireless communication
- Field tests: Thyssen Krupp Steel Duisburg
- Measurement at torpedo ladle with liquid pig iron (600 Tons)
Field tests ---- Impressions
Field tests ---- Measuring results

- 24 h measurement at Torpedo ladle
- Thermoelectric generator supplies enough energy
- Filling in blast furnace
Conclusions

- Color dyes for NO$_2$, CO and NH$_3$ detection
- Integration as waveguide-based system
- Detection in the low ppm-range
- Extremely low cross-sensitivities
Further Research

- Analysis of different polymers as a matrix
- Synthesis of chromogenic substances
- Long term stability
- Response time
- Improvement of deposition process
 - Dip coating
 - Spin coating
 - Inkjet printing
- Polymer waveguide
- Miniaturisation of sensor system
Thanks to the gas sensors group at IPM and EPFL

- Janosch Kneer
- Jonas Rist
- Martin Dold
- Andreas Kürzinger
- Marie-Luise Bauersfeld
- Ina Schumacher
- Andreas Müller
- Timo Laske
- Jochen Huber
- Sven Rademacher
- Jerome Courbat, Dannick Briand, Kay Severin, EPFL
Thank you for your attention!